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A large nonequilibrium spin-polarized current can induce a magnetization dynamic phase �ferrodynamics�
when the static uniform magnetization becomes unstable. We quantitatively determine the transport and mag-
netic properties of the ferrodynamic phase. The scaling exponents near the critical current are analyzed via
numerical simulations. We further propose the existence of the spin electric-motive force in the ferrodynamic
phase.
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I. INTRODUCTION

One of the emerging subjects in magnetoelectronics is
the magnetization dynamics driven by a spin-polarized
current.1,2 In magnetic spin valves and tunnel junctions, a
sufficiently large current could lead to precession3 or
reversal4,5 of one of the magnetic layers. In a single ferro-
magnetic layer or wire, a large spin-polarized current may
drive domain walls into motion6 and generate spin waves.7,8

These discoveries have fueled a new direction of research in
current-controlled manipulation of magnetization dynamics
for memory technology application.9–11

Up until now, theoretical and experimental efforts were
focused on the critical values of the current for domain-wall
motion and for spin-wave excitations. When there is a pre-
existing domain wall in a nanowire, a critical value of the
current Ic1 is required to overcome the pinning potential in
order to move the domain wall.12,13 If the nanowire is ini-
tially uniformly magnetized, i.e., there is no domain wall, a
second and larger critical value of the current Ic2 is needed to
destabilize the uniform magnetization. A further increase in
the current will lead to chaotic magnetization dynamics.14,15

Although the existence of this second critical current Ic2 has
already been predicted by a number of papers,16–20 the physi-
cal properties near the critical current has never been inves-
tigated. In this Brief Report, we determine the fundamental
excitations of a uniform magnetic nanowire induced by the
spin current. We define the magnetization dynamics above
Ic2 as a ferrodynamic phase which can be characterized by
the critical exponents at the transition region close to Ic2. We
further predict an induced electromotive force �emf� at the
ferrodynamic phase.

II. MODEL

We start with the equation of motion for the magnetiza-
tion in the presence of the current,21,22
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where m=M /Ms is the magnetization vector, � is the gyro-
magnetic ratio, Heff is the effective field, � is the Gilbert

damping parameter and Ms is the saturation magnetization.
The last two terms describe the adiabatic and nonadiabatic
spin torques, respectively, where j is the current density in
the direction of êx, b= P�B /eMs and c=�b, P is the spin
polarization and � is a phenomenological constant.21

III. LINEAR INSTABILITY

The critical current density jc2 can be immediately ob-
tained by the conventional linear instability analysis. Con-
sider a small deviation of the uniform magnetization,
m�x , t�= êx+�m exp�i��k�t− ikx� where �m, k and ��k� are,
respectively, the amplitude �small vector perpendicular to
êx�, wave vector and frequency of spin wave. Since we as-
sume the wire is infinitely long and the boundary effect is
discarded, �m can be treated as a spatially-independent con-
stant. By placing m�x , t� into Eq. �1� and carrying out the
linear instability analysis, we find

�− i�� + jbk� f1

f2 − i�� + jbk� ���my

�mz
� = 0, �2�

where we have defined f1=−��Jexk
2+H1�− i���+ jck� and

f2=��Jexk
2+H2�+ i���+ jck�, where H1=He+Hk+4	Ms and

H2=He+Hk, where He and Hk are the external field and the
anisotropy field along the wire; Jex is the exchange constant.
By calculating the determinant of the above secular equation,
one could find the critical current jc�k� at the onset of insta-
bility �Im �=0�

jc�k� =
�

k�b − c/��
	�Jexk

2 + H1��Jexk
2 + H2� . �3�

By minimizing jc�k� with respect to k, i.e., �jc /�k=0, we find
the minimum critical current density jc2 is

jc2 = �	Jex�	H1 + 	H2�/
b − c/�
 . �4�

Interestingly, only a single spin wave with frequency �c
= jc2�c /���H1H2 /Jex

2 �1/4 is excited at jc2. One notes that jc2 is
infinite when ��c /b=�. The lack of spin-wave excitations
in this case can be traced back to Eq. �1�: When one makes a
Galilean transformation, x�=x− jbt and t�= t, Eq. �1� be-
comes a usual LLG equation without the spin torque terms.
Thus, the spin-wave excitations are prohibited when �=� as
expected for a Galilean invariance system. The exact relation
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between b and c has been the subject of the theoretical
controversy,23–25 but in general ���. We set �=2� for the
rest of the Brief Report.

IV. SPIN-WAVE DISTRIBUTION

When the current density is larger than jc2, the excited
spin-wave frequency expands from a single value to a finite
range. The secular equation corresponding to Eq. �2� leads to
the spin-wave dispersion relation

��k� = − jbk + �	�Jexk
2 + H1��Jexk

2 + H2� , �5�

where the first term on the right-hand side is known as the
Doppler shift.17 In addition, the spin wave becomes unstable
when Im �
0, i.e.,

��k� 
 − jk
c

�
. �6�

For illustration, we plot both Eq. �5� and ��k�=−jk�c /�� in
Fig. 1�a� with j / jc2=1.1. The spin waves with wave vector k
in the range k1
k
k2 are all excitable since they satisfy
both Eqs. �5� and �6�. To describe the ferrodynamic phase for
j� jc2, we first quantitatively determine the number of the
spin waves excited by the current by using the micromag-
netic simulation. The wire is chosen to be 4 �m in length,
20 nm in width and 5 nm in thickness. We have used open
boundary conditions in the directions of width and thickness,
but used the periodic boundary in the length direction. The
mesh size is taken as 2�2�5 nm3. To reduce the compu-
tation time we replace the magnetostatic interaction by the
demagnetization field perpendicular to the plane for most of
the numerical results. The full consideration of the magneto-
static interaction for a few selected simulations reveals the
same qualitative conclusions discussed below. We start with
the magnetization being initially magnetized along the wire
with small random fluctuations. The magnetization evolves
with time according to Eq. �1�. After a few nanoseconds, we

start to record the magnetization vector m�x , t�. The degree
of initial nonuniformity of magnetization affects the time
needed to excite the spin waves. However, the results pre-
sented in the present work are obtained at the long-time limit
where the average physical properties do not depend on the
initial condition.

When the current density is below the critical value jc2,
m�x , t� always returns m=ex, i.e., the uniform magnetization
is the only stable mode. Once j� jc2, small-amplitude spin
waves with well-defined wavelength and frequency are gen-
erated, indicating the ferromagnetic instability. The number
of the spin wave nk is

nk = lim
T→�

1

T
�

0

T

dt
m��k,t�
2, �7�

where m��k , t� is the Fourier transformation of the perpen-
dicular component of magnetization m��x , t�. In Fig. 1�b� we
show the spin-wave distribution for three different current
densities. The spectrum width 
k, which is defined as the
width at the half maximum, displays a scaling relation,

k
�j− jc��. The exponent � is not universal; it depends on
the applied magnetic field. It is interesting to compare 2
k
with the analytical result 
k

0=k2−k1. As shown in Fig. 1�c�,
2
k is generally larger than 
k

0, indicating the importance of
the interaction among the excited spin waves.

We have noted that the simulation yields some compli-
cated structures such as vortex and antivortex pairs. These
states are formed due to the strong spin-wave interaction.
Nakatani et al.15 have recently analyzed the properties of
these states in great detail by using a different boundary con-
dition. Here we neglect these ultrahigh energy excitations
since they have a very short lifetime and contribute insignifi-
cantly to the spin-wave distribution.

V. ORDER PARAMETERS

Next we calculate the saturation magnetization above the
critical point. The current induced excitations could cause
the fluctuations of the instantaneous magnetization ms�t�
= 
�0

Ldxm�x , t� /L
. The inset of Fig. 2�a� shows two examples
of ms�t� for different current density. The order parameter is
then defined by

ms = lim
T→�

1

T
�

0

T

ms�t�dt . �8�

In Fig. 2�a�, we have fitted the order parameter by the scaling
relation 1−ms=C0�j / jc2−1���H� for several different mag-
netic fields which are applied in x direction. The exponent
��H� depends on the field. The external field dependence of
the exponent is shown in Fig. 2�a�. The reduction of the
exponent for the increase in the field is due to suppression of
the fluctuation of ms�t�, similar to the thermally driven phase
transition. The susceptibility, ����ms /�He�, does not show a
single exponent scaling. This is because the critical current,
see Eqs. �3� and �4�, depends on the field and one could find
that � scales with C1�j− jc��−1+C2�j− jc�� ln�j− jc�, where
C1 and C2 are noncritical coefficients.
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FIG. 1. �Color online� �a� The spin-wave dispersion relation
�Eq. �5�� plotted with a fixed current density j / jc2=1.1 �the red
�dark gray� curve�, and the part of black line ���k�=−jkc /�� above
the red curve indicates the region of instability. �b� Spin-wave dis-
tribution nk calculated from Eq. �7�. �c� The spectrum width 2
k

and the analytical result 
k
0�k2−k1 derived from Fig. 1�a�.
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We also calculate the time-averaged magnetization in the
direction of the magnetic field by �mx�=1−�dknk. As shown
in Fig. 2�b�, we find the exponent � is slightly different from
that of the order parameter. We attribute this difference to the
“frequency filtering” of the fast Fourier transform calculation
of m��k , t�: Shot-noise-like wall/vortex-pair excitations have
been partially filtered in the transformation while ms includes
such higher-energy excitations.

VI. SPIN ELECTROMOTIVE FORCES

Accompanying with the phase transition from the uni-
formly magnetized state to the ferrodynamic state, an emf
appears.23–28 The spin emf is the reaction of the magnetiza-
tion dynamics to the electric current. In magnetic spin
valves, the magnetization precession can create a spin cur-
rent of the conduction electron known as spin pumping.29

Similarly, the domain-wall motion can also produce a spin
current which is termed as the spin emf. We show below that
the spin waves generated by the current lead to an induced
voltage. To obtain the induced emf, let us consider the rate of
energy �density� change in the magnetic wire from Eq. �1�,

�E

�t
= − ��Ms
m � Heff
2 − b�jMs�Heff ·

�m

�x
�

+ c�jMs�Heff · �m �
�m

�x
�� , �9�

where the first term on the right-hand side represents the
energy dissipated into the background �i.e., lattices�, and the
second and third terms are the energy pumped into the mag-
netic system by the current, where b�= �1+���b and c�= ��
−��b. Conversely, we can interpret the second and third
terms as a power loss of the conduction electrons. If we
define the induced emf by relating j�emf to this power loss in
Eq. �9�, we have

�emf =� dx
�Em

j � t
= − b�� dxMs�Heff ·

�m

�x
�

+ c�� dxMs�Heff · �m �
�m

�x
�� . �10�

A similar expression has been previously made by Saslow.26

The essential physics of the induced emf is same as the spin
pumping: The dynamics of the magnetization leads to an
induced spin current that generates an additional voltage via
spin accumulation.29 Note from Eq. �10� that the emf has
both adiabatic and nonadiabatic contributions.

To estimate the emf generated in the ferrodynamic phase,
we expand m�x , t� in Eq. �1� near m=ex and only keep the
second order in my and mz,

m�x,t� = �1 −
1

2
�my

2 sin2� + mz
2 cos2���ex + my sin �ey

+ mz cos �ez, �11�

where �=��k�t−kx. By placing Eq. �11� into Eq. �10�, we
find

� = b�� dxMsf�my
2,mz

2�sin 2� + c�� dxMs�Jexk
2 + H2

+ 4	Ms cos2��kmymz, �12�

where f�my
2 ,mz

2� is a function of my
2 and mz

2 which do not
explicitly depend on t and x. The first term on the right-hand
side is the contribution from the adiabatic torque; the time
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FIG. 3. �Color online� Time-dependent �a� and time-averaged
�b� spin emf generated by the adiabatic �black� and nonadiabatic
�red� torques, where He=0.5T and j / jc2=1.05: Total spin emf as
functions of fields �c� and currents �d�.
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FIG. 2. �Color online� �a� Simulation results of the saturation
magnetization ms calculated from Eq. �8� as a function of current
density with three different external fields. �b� The total number of
the spin wave �nk calculated from Eq. �7� as a function of current
density with three different external fields.
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average is approximately zero due to the oscillatory function
sin 2�. In the ordinary current-driven domain-wall motion,
the emf from the adiabatic torque23 is generally nonzero
when a domain wall moves across a voltage probe. Here we
can treat ferrodynamic phase as multiple moving domain
walls with equal numbers of the head-to-head and tail-to-tail
walls passing through a voltage probe. Thus the positive and
negative signals of the induced emf are averaging to zero.

The second term in Eq. �12� is proportional to the non-
adiabatic torque which is not zero upon time and spatial
averaging. Therefore, the emf generated in the ferrodynamic
phase is mainly from the nonadiabatic component of spin
transfer between conduction electrons and local moments.
We confirm the above analysis by numerically calculating
the emf from Eq. �10�. While both terms in Eq. �10� show
strong fluctuations due to the presence of nonlinear wall/
vortex-pair excitations as shown in Fig. 3�a�, the average emf
is clearly dominated by the nonadiabatic torque; see Fig.

3�b�. By varying parameters, we show in Figs. 3�c� and 3�d�
that the time-averaged emf is linear with the external field
and the current. Also, we found the average emf is ohmic
because the emf is proportional to the length of the wire �not
shown�.

The emf predicted above could be experimentally mea-
sured. For example, we find that the averaged emf is about
0.1 mV across a 4 �m long permalloy wire with the current
density 4�109A /cm2, P=0.7, Ms=800 emu /cc and the re-
sistivity �=20 �� cm; this emf is about 0.3% of the total
applied voltage.
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